En Belgique, les premiers partis politiques ont vu le jour et se sont développés dès le XIXe siècle. Ils ont exercé nombre de missions dans la société et leur importance a crû dans le temps. Pourtant, leur dynamique, leurs rôles et ce qu'ils incarnent aux yeux des citoyens se sont transformés au cours des dernières décennies. Read More
Les partis sont soumis à de multiples modifications et tensions qui les affectent, les interpellent et les appellent à se transformer profondément : importance accrue de l'Union européenne dans l'exercice des politiques publiques, difficultés des partis politiques à l’échelle européenne, déclin du nombre de membres, demandes participatives croissantes, emprise technocratique…
Comment les partis agissent-il au regard de ces mutations ? Comment les interprètent-ils ? Comment appréhendent-ils la sécularisation avancée de la société belge et l’augmentation du capital scolaire ? Comment réagissent-ils à l’interne ?
Ces questions sont analysées dans cet ouvrage. Dix ans après leur dernière grande étude comparative, les auteurs présentent un nouveau travail de synthèse original. Celui-ci offre, de manière systématique et sur la base d’une grille commune, une analyse de chaque parti à l’œuvre dans le système politique belge : CD&V, CDH, sp.a/Vooruit, PS, OpenVLD, MR, Ecolo, Groen, N-VA, Vlaams Belang, PTB-PVDA, DéFI, les droites radicales et la galaxie des petits partis. En parallèle, il propose une analyse transversale à l’aune de la communication, de l’organisation partisane, des évolutions électorales et de la mue du système de partis en Belgique.
I PROBABILITÉS
1 Mesures de probabilité
1.1 Expérience aléatoire, univers et événements
1.2 Tribus (sigma-algèbres)
1.3 Mesures de probabilité
1.4 Analyse combinatoire : méthodes de dénombrement
1.5 Probabilités conditionnelles et indépendance
1.6 Exercices
2 Variables aléatoires
2.1 Définition et exemples
2.2 Loi ou distribution de probabilité
2.3 Opérations sur les variables aléatoires, égalité presque sûre, égalité en distribution
2.4 Espérance mathématique
2.5 Variance et inégalité de Tchebychev
2.6 Quelques distributions discrètes classiques
2.7 Quelques distributions continues classiques
2.8 Moments et fonction génératrice des moments
2.9 Exercices
3 Vecteurs aléatoires
3.1 Définition, distribution jointe et fonction de répartition
3.2 Distribution jointe et distributions marginales
3.3 Distributions conditionnelles
3.4 Indépendance
3.5 Covariance, corrélation et matrice de variance-covariance
3.6 Courbes de régression (contexte bivarié)
3.7 Lois normales bivariées
3.8 Distributions k-variées
3.9 Exercices
4 Convergences stochastiques et théorèmes limites
4.1 Convergences stochastiques d'une suite de variables aléatoires
4.2 La loi des grands nombres
4.3 Le théorème central-limite
4.4 Exercices
II INFÉRENCE STATISTIQUE
5 Population, échantillon et vraisemblance
5.1 Observation, population et échantillon
5.2 Vraisemblance
5.3 Fonction de répartition, moments et quantiles
5.4 Exercices
6 Statistiques et lois échantillonnées
6.1 Définitions
6.2 Lois échantillonnées exactes
6.3 Lois échantillonnées asymptotiques (approchées)
6.4 Exercices
7 Estimation ponctuelle
7.1 Introduction
7.2 Propriétés d'un estimateur
7.3 Méthodes d'estimation
7.4 Exercices
8 Estimation par intervalle (de confiance)
8.1 Introduction et définition
8.2 Fonctions pivotales
8.3 Méthode générale de construction
8.4 Caractéristiques d’un intervalle de confiance
8.5 « Combien d’observations faut-il pour que... ? »
8.6 Exercices
9 Tests d’hypothèses
9.1 Procédure de test
9.2 Un exemple
9.3 Démarche générale d’un test statistique
9.4 Exercices
10 Inférence sur les moyennes et les variances
10.1 Inférence sur une moyenne et sur une variance
10.2 Comparaison de deux moyennes
10.3 Comparaison de deux variances
10.4 Exercices
11 Inférence sur les probabilités
11.1 Inférence sur une probabilité (proportion)
11.2 Comparaison de deux probabilités (proportions)
11.3 Les tests chi-carré (chi-deux)
11.4 Exercices
12 Analyse de la variance à un facteur
12.1 Définitions et exemple
12.2 Estimation des paramètres du modèle
12.3 Test de l’hypothèse d’absence d’effet-traitement
12.4 Exercices
13 Analyse de la variance à deux facteurs
13.1 Définitions et exemple
13.2 Décomposition de la somme des carrés totale
13.3 Tests d’hypothèses
13.4 Comparaisons multiples : la méthode de scheffé
13.5 Exercices
14 Modèles de régression linéaire
14.1 Introduction
14.2 Régression linéaire simple
14.3 Régression linéaire multiple : le modèle linéaire général
14.4 Exercices
ANNEXES
A.1 Compléments sur la théorie des tests d’hypothèses
A1.1 Terminologie et concepts de base
A1.2 Le lemme fondamental de Neyman-Pearson
A1.3 Tests unilatéraux à puissance uniformément maximale
A1.4 Tests bilatéraux
A1.5 Tests du rapport de vraisemblance, de Wald et du score
A1.6 Tests et intervalles de confiance
A1.7 Exercices
A.2 Introduction à la théorie de la décision statistique
A2.1 Caractérisation d’un problème d’inférence statistique
A2.2 Comparaison des règles de décision basée sur le risque
A2.3 Exercices
BIBLIOGRAPHIE
INDEX